Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Virology ; 594: 110049, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527382

RESUMO

The Second International Conference of the World Society for Virology (WSV), hosted by Riga Stradins University, was held in Riga, Latvia, on June 15-17th, 2023. It prominently highlighted the recent advancements in different disciplines of virology. The conference had fourteen keynote speakers covering diverse topics, including emerging virus pseudotypes, Zika virus vaccine development, herpesvirus capsid mobility, parvovirus invasion strategies, influenza in animals and birds, West Nile virus and Marburg virus ecology, as well as the latest update in animal vaccines. Discussions further explored SARS-CoV-2 RNA replicons as vaccine candidates, SARS-CoV-2 in humans and animals, and the significance of plant viruses in the 'One Health' paradigm. The presence of the presidents from three virology societies, namely the American, Indian, and Korean Societies for Virology, highlighted the event's significance. Additionally, past president of the American Society for Virology (ASV), formally declared the partnership between ASV and WSV during the conference.


Assuntos
Vacinas contra Influenza , Saúde Única , Vírus , Infecção por Zika virus , Zika virus , Animais , Humanos , RNA Viral , Virologia
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-445091

RESUMO

Severe respiratory disease coronavirus-2 (SARS-CoV-2) causes the most devastating disease, COVID-19, of the recent century. One of the unsolved scientific questions around SARS-CoV-2 is the animal origin of this virus. Bats and pangolins are recognized as the most probable reservoir hosts that harbor the highly similar SARS-CoV-2 related viruses (SARSr-CoV-2). Here, we report the identification of a novel lineage of SARSr-CoVs, including RaTG15 and seven other viruses, from bats at the same location where we found RaTG13 in 2015. Although RaTG15 and the related viruses share 97.2% amino acid sequence identities to SARS-CoV-2 in the conserved ORF1b region, but only show less than 77.6% to all known SARSr-CoVs in genome level, thus forms a distinct lineage in the Sarbecovirus phylogenetic tree. We then found that RaTG15 receptor binding domain (RBD) can bind to and use Rhinolophus affinis bat ACE2 (RaACE2) but not human ACE2 as entry receptor, although which contains a short deletion and has different key residues responsible for ACE2 binding. In addition, we show that none of the known viruses in bat SARSr-CoV-2 lineage or the novel lineage discovered so far use human ACE2 efficiently compared to SARSr-CoV-2 from pangolin or some of the SARSr-CoV-1 lineage viruses. Collectively, we suggest more systematic and longitudinal work in bats to prevent future spillover events caused by SARSr-CoVs or to better understand the origin of SARS-CoV-2.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-116061

RESUMO

Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. We used a Bayesian statistical framework and sequence data from all known bat-CoVs (including 630 novel CoV sequences) to study their macroevolution, cross-species transmission, and dispersal in China. We find that host-switching was more frequent and across more distantly related host taxa in alpha-than beta-CoVs, and more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-093658

RESUMO

The Chinese horseshoe bat (Rhinolophus sinicus), reservoir host of severe acute respiratory syndrome coronavirus (SARS-CoV), carries many bat SARS-related CoVs (SARSr-CoVs) with high genetic diversity, particularly in the spike gene. Despite these variations, some bat SARSr-CoVs can utilize the orthologs of human SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), for entry. It is speculated that the interaction between bat ACE2 and SARSr-CoV spike proteins drives diversity. Here, we have identified a series of R. sinicus ACE2 variants with some polymorphic sites involved in the interaction with the SARS-CoV spike protein. Pseudoviruses or SARSr-CoVs carrying different spike proteins showed different infection efficiency in cells transiently expressing bat ACE2 variants. Consistent results were observed by binding affinity assays between SARS- and SARSr-CoV spike proteins and receptor molecules from bats and humans. All tested bat SARSr-CoV spike proteins had a higher binding affinity to human ACE2 than to bat ACE2, although they showed a 10-fold lower binding affinity to human ACE2 compared with their SARS-CoV counterpart. Structure modeling revealed that the difference in binding affinity between spike and ACE2 might be caused by the alteration of some key residues in the interface of these two molecules. Molecular evolution analysis indicates that these residues were under strong positive selection. These results suggest that the SARSr-CoV spike protein and R. sinicus ACE2 may have coevolved over time and experienced selection pressure from each other, triggering the evolutionary arms race dynamics. It further proves that R. sinicus is the natural host of SARSr-CoVs. ImportanceEvolutionary arms race dynamics shape the diversity of viruses and their receptors. Identification of key residues which are involved in interspecies transmission is important to predict potential pathogen spillover from wildlife to humans. Previously, we have identified genetically diverse SARSr-CoV in Chinese horseshoe bats. Here, we show the highly polymorphic ACE2 in Chinese horseshoe bat populations. These ACE2 variants support SARS- and SARSr-CoV infection but with different binding affinity to different spike proteins. The higher binding affinity of SARSr-CoV spike to human ACE2 suggests that these viruses have the capacity of spillover to humans. The positive selection of residues at the interface between ACE2 and SARSr-CoV spike protein suggests a long-term and ongoing coevolutionary dynamics between them. Continued surveillance of this group of viruses in bats is necessary for the prevention of the next SARS-like disease.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20036145

RESUMO

Currently, there are no approved specific antiviral agents for 2019 novel coronavirus disease (COVID-19). In this study, ten severe patients confirmed by real-time viral RNA test were enrolled prospectively. One dose of 200 mL convalescent plasma (CP) derived from recently recovered donors with the neutralizing antibody titers above 1:640 was transfused to the patients as an addition to maximal supportive care and antiviral agents. The primary endpoint was the safety of CP transfusion. The second endpoints were the improvement of clinical symptoms and laboratory parameters within 3 days after CP transfusion. The median time from onset of illness to CP transfusion was 16.5 days. After CP transfusion, the level of neutralizing antibody increased rapidly up to 1:640 in five cases, while that of the other four cases maintained at a high level (1:640). The clinical symptoms were significantly improved along with increase of oxyhemoglobin saturation within 3 days. Several parameters tended to improve as compared to pre-transfusion, including increased lymphocyte counts (0.65x109/L vs. 0.76x109/L) and decreased C-reactive protein (55.98 mg/L vs. 18.13 mg/L). Radiological examinations showed varying degrees of absorption of lung lesionswithin 7 days. The viral load was undetectable after transfusion in seven patients who had previous viremia. No severe adverse effects were observed. This study showed CP therapy was welltolerated and could potentially improve the clinical outcomes through neutralizing viremia in severe COVID-19 cases. The optimal dose and time point, as well as the clinical benefit of CP therapy, needs further investigation in larger well-controlled trials. Significance StatementCOVID-19 is currently a big threat to global health. However, no specific antiviral agents are available for its treatment. In this work, we explored the feasibility of convalescent plasma (CP) transfusion to rescue severe patients. The results from 10 severe adult cases showed that one dose (200 mL) of CP was welltolerated and could significantly increase or maintain the neutralizing antibodies at a high level, leading to disappearance of viremia in 7 days. Meanwhile, clinical symptoms and paraclinical criteria rapidly improved within 3 days. Radiological examination showed varying degrees of absorption of lung lesions within 7 days. These results indicate that CP can serve as a promising rescue option for severe COVID-19 while the randomized trial is warranted.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20030833

RESUMO

BackgroundWith the emergence of 4rd generation transmission, the prevention and treatment of the novel coronavirus disease 2019 (COVID-19) has entered a new period. We aimed to report several changes in the clinical characteristics at admission of patients with COVID-19. MethodsClinical records and laboratory results of patients suffering from COVID-19 were retrospectively reviewed and matched with the admission dates to analyze the changes in characteristics at the onset of illness. ResultsOf the 89 affected patients, 31 [34.8%] patients were admitted from January 16 to 22, and 58 [65.2%] were admitted from January 23 to 29. Patients were admitted with more systemic symptoms, such as fever (21 [67.7%] of 31), fatigue (13 [41.9%] of 31), and myalgia (7 [22.6%] of 31), before January 23. More patients (10 [32.3%] of 31) admitted before January 23 had a small amount of sputum production compared with a smaller proportion (4 [6.9%] of 58) of the patients admitted after January 23. Other symptoms, such as cough, nausea, diarrhea, and chest tightness, were not significantly different between the two groups. In addition, the group admitted before January 23 had a larger proportion of patients with reduced lymphocyte (13 [54.2%] of 24), CD3 (11 [54.4%] of 21), and CD8 (9 [42.9%] of 21) counts and elevated serum amyloid A (SAA, 18 [75%] of 24). ConclusionsThe initial symptoms of recently infected patients seem more insidious, indicating that the new coronavirus may gradually evolve into a virus similar to influenza and latent in asymptomatic carriers for a long time. SummaryCompared with the cases admitted earlier, more hidden initial symptoms and improved immune system disorders appeared in COVID-19 patients infected recently.

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-983247

RESUMO

The recent outbreak of coronavirus disease (COVID-19) caused by SARS-CoV-2 infection in Wuhan, China has posed a serious threat to global public health. To develop specific anti-coronavirus therapeutics and prophylactics, the molecular mechanism that underlies viral infection must first be confirmed. Therefore, we herein used a SARS-CoV-2 spike (S) protein-mediated cell-cell fusion assay and found that SARS-CoV-2 showed plasma membrane fusion capacity superior to that of SARS-CoV. We solved the X-ray crystal structure of six-helical bundle (6-HB) core of the HR1 and HR2 domains in SARS-CoV-2 S protein S2 subunit, revealing that several mutated amino acid residues in the HR1 domain may be associated with enhanced interactions with HR2 domain. We previously developed a pan-coronavirus fusion inhibitor, EK1, which targeted HR1 domain and could inhibit infection by divergent human coronaviruses tested, including SARS-CoV and MERS-CoV. We then generated a series of lipopeptides and found that the EK1C4 was the most potent fusion inhibitor against SARS-CoV-2 S protein-mediated membrane fusion and pseudovirus infection with IC50s of 1.3 and 15.8 nM, about 241- and 149-fold more potent than that of EK1 peptide, respectively. EK1C4 was also highly effective against membrane fusion and infection of other human coronavirus pseudoviruses tested, including SARS-CoV and MERS-CoV, as well as SARSr-CoVs, potently inhibiting replication of 4 live human coronaviruses, including SARS-CoV-2. Intranasal application of EK1C4 before or after challenge with HCoV-OC43 protected mice from infection, suggesting that EK1C4 could be used for prevention and treatment of infection by currently circulating SARS-CoV-2 and emerging SARSr-CoVs.

8.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-964882

RESUMO

A new coronavirus (CoV) identified as COVID-19 virus is the etiological agent responsible for the 2019-2020 viral pneumonia outbreak that commenced in Wuhan1-4. Currently there is no targeted therapeutics and effective treatment options remain very limited. In order to rapidly discover lead compounds for clinical use, we initiated a program of combined structure-assisted drug design, virtual drug screening and high-throughput screening to identify new drug leads that target the COVID-19 virus main protease (Mpro). Mpro is a key CoV enzyme, which plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for this virus5,6. Here, we identified a mechanism-based inhibitor, N3, by computer-aided drug design and subsequently determined the crystal structure of COVID-19 virus Mpro in complex with this compound. Next, through a combination of structure-based virtual and high-throughput screening, we assayed over 10,000 compounds including approved drugs, drug candidates in clinical trials, and other pharmacologically active compounds as inhibitors of Mpro. Six of these inhibit Mpro with IC50 values ranging from 0.67 to 21.4 M. Ebselen also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of this screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases where no specific drugs or vaccines are available.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-923011

RESUMO

The newly identified 2019 novel coronavirus (2019-nCoV) has caused more than 800 laboratory-confirmed human infections, including 25 deaths, posing a serious threat to human health. Currently, however, there is no specific antiviral treatment or vaccine. Considering the relatively high identity of receptor binding domain (RBD) in 2019-nCoV and SARS-CoV, it is urgent to assess the cross-reactivity of anti-SARS-CoV antibodies with 2019-nCoV spike protein, which could have important implications for rapid development of vaccines and therapeutic antibodies against 2019-nCoV. Here, we report for the first time that a SARS-CoV-specific human monoclonal antibody, CR3022, could bind potently with 2019-nCoV RBD (KD of 6.3 nM). The epitope of CR3022 does not overlap with the ACE2 binding site within 2019-nCoV RBD. Therefore, CR3022 has the potential to be developed as candidate therapeutics, alone or in combination with other neutralizing antibodies, for the prevention and treatment of 2019-nCoV infections. Interestingly, some of the most potent SARS-CoV-specific neutralizing antibodies (e.g., m396, CR3014) that target the ACE2 binding site of SARS-CoV failed to bind 2019-nCoV spike protein, indicating that the difference in the RBD of SARS-CoV and 2019-nCoV has a critical impact for the cross-reactivity of neutralizing antibodies, and that it is still necessary to develop novel monoclonal antibodies that could bind specifically to 2019-nCoV RBD.

10.
Virologica Sinica ; (6): 273-277, 2012.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-424064

RESUMO

Ebola virus (EBOV) and Marburg virus (MARV) are causative agents of severe hemorrhagic fever with high mortality rates in humans and non-human primates and there is currently no licensed vaccine or therapeutics.To date,there is no specific laboratory diagnostic test in China,while there is a national need to provide differential diagnosis during outbreaks and for instituting acceptable quarantine procedures.In this study,the TaqMan RT-PCR assays targeting the nucleoprotein genes of the Zaire Ebolavirus (ZEBOV) and MARV were developed and their sensitivities and specificities were investigated.Our results indicated that the assays were able to make reliable diagnosis over a wide range of virus copies from 103 to 109,corresponding to the threshold of a standard RNA transcript.The results showed that there were about 1010 RNA copies per milliliter of virus culture supernatant,equivalent to 10,000 RNA molecules per infectious virion,suggesting the presence of many non-infectious particles.These data indicated that the TaqMan RT-PCR assays developed in this study will be suitable for future surveillance and specific diagnosis of ZEBOV and MARV in China.

11.
Virologica Sinica ; (6): 123-130, 2011.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-415326

RESUMO

Recent studies showed that white spot syndrome virus(WSSV)isolates from different geographic locations share a high genetic similarity except the variable regions in ORF23/24 and ORF14/15,and variable number of tandem repeats(VNTR)within ORF94.In this study,genotyping was performed according to these three variable regions among WSSV isolates collected during 1998/1999 from Southern China.These WSSV isolates contain a deletion of 1168,5657,5898,9316 and 11093 bp,respectively in the variable region ORF23/24compared with WSSV-TW,and a deletion of 4749 or 5622 bp in the variable region ORF14/15 relative to TH-96-II.Four types of repeat units(RUs)(6,8,9 and 13 RUs)in ORF94 were detected in these isolates,with the shortest 6 RUs as the most prevalent type.Our results provide important information for a better understanding of the spatio-temporal transmission mode and the WSSV genetic evolution lineage.

12.
Virologica Sinica ; (6): 67-71, 2011.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-382727

RESUMO

White spot syndrome virus(WSSV), Taura syndrome virus(TSV)and Infectious hypodermal and haematopoietic necrosis virus(IHHNV)are three shrimp viruses responsible for major pandemics affecting the shrimp farming industry. Shrimps samples were collected from 12 farms in Zhejiang province, China, in 2008 and analyzed by PCR to determine the prevalence of these viruses. From the 12 sampling locations, 8 farms were positive for WSSV, 8 for IHHNV and 6 for both WSSV and IHHNV. An average percentage of 57.4% of shrimp individuals were infected with WSSV, while 49.2% were infected with IHHNV. A high prevalence of co-infection with WSSV and IHHNV among samples was detected from the following samples: Bingjiang(93.3%), liuao(66.7%), Jianshan(46.7%)and Xianxiang(46.7%). No samples exhibited evidence of infection with TSV in collected samples. This study provides comprehensive information of the prevalence of three shrimp viruses in Zhejiang and may be helpful for disease prevention control in this region.

13.
Protein & Cell ; (12): 109-114, 2010.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-757724

RESUMO

Bat, the only flying mammal and count more than 20% of the extant mammals on earth, were recently identified as a natural reservoir of emerging and reemerging infectious pathogens. Astonishing amount (more than 70) and genetic diversity of viruses isolated from the bat have been identified in different populations throughout the world. Many studies focus on bat viruses that caused severe domestic and human diseases. However, many viruses were found in apparently healthy bats, suggesting that bats may have a specific immune system or antiviral activity against virus infections. Therefore, basic researches for bat immunology and virus-host interactions are important for understanding bat-derived infectious diseases.


Assuntos
Animais , Humanos , Quirópteros , Classificação , Virologia , Doenças Transmissíveis Emergentes , Virologia , Reservatórios de Doenças , Virologia , Variação Genética , Vírus , Classificação , Genética
14.
Virologica Sinica ; (6): 36-44, 2010.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-404192

RESUMO

A group of SARS-Iike coronaviruses(SL-CoV)have been identified in horseshoe bats.Despite SL-CoVs and SARS-CoV share identical genome structure and high-level sequence similarity,SL-CoV does not bind to the same cellular receptor as for SARS-CoV and the N-terminus of the S proteins only share 64% amino acid identity,suggesting there are fundamental differences between these two groups of coronaviruses.To gain insight into the basis of this difference,we established a recombinant adenovirus system expressing the S protein from SL-CoV(rAd-Rp3-S)to investigate its immune characterization.Our results showed that immunized mice generated strong humoral immune responses against the SL-CoV S protein.Moreover,a strong cellular immune response demonstrated by elevated IFN-γ and IL-6 levels was also observed in these mice.However,the induced antibody from these mice had weaker cross-reaction with the SARS-CoV S protein,and did not neutralize HIV pseudotyped with SARS-CoV S protein.These results demonstrated that the immunogenicity of the SL-CoV S protein is distinct from that of SARS-CoV,which may cause the immunological differences between human SARS-CoV and bat SL-CoV.Furthermore,the recombinant virus could serve as a potential vaccine candidate against bat SL-CoV infection.

15.
Virologica Sinica ; (6): 71-76, 2009.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-406741

RESUMO

The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.

16.
Virologica Sinica ; (6): 146-151, 2009.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-406650

RESUMO

The nucleocapsid protein (N) is a major structural protein of coronaviruses. The N protein of bat SARS-like coronavirus (SL-CoV) has a high similarity with that of SARS-CoV. In this study, the SL-CoV N protein was expressed in Escherichia coli, purified and used as antigen. An Indirect Enzyme-Linked Immunosorbent Assay (indirect ELISA) was developed for detection of SARS- or SL-CoV infections in bat populations. The detection of 573 bat sera with this indirect ELISA demonstrated that SL-CoVs consistently circulate in Rhinilophus species, further supporting the proposal that bats are natural reservoirs of SL-CoVs. This method uses 1-2 μl of serum sample and can be used for preliminary screening of infections by SARS- or SL-CoV with a small amount of serum sample.

17.
Virologica Sinica ; (6): 73-77, 2008.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-407457

RESUMO

The extra small virus (XSV) is a satellite virus associated with Macrobrachium rosenbergii nodavirus (MrNV) and its genome consists of two overlapping ORFs, CP17 and CP16. Here we demonstrate that CP16 is expressed from the second AUG of the CP17 gene and is not a proteinase cleavage result of CP17. We further expressed CP17 and several truncated CP17s (in which the N- or C-terminus or both was deleted), respectively, in Escherichia coli. Except for the recombinant plasmid CP17ΔC10, all recombinant plasmids expressed soluble protein which assembled into virus-like particles (VLPs), suggesting that the C-terminus is important for VLP formation.

18.
Virologica Sinica ; (6): 157-166, 2008.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-407133

RESUMO

White spot syndrome virus (WSSV), a unique member within the virus family Nimaviridae, is the most notorious aquatic virus infecting shrimp and other crustaceans and has caused enormous economic losses in the shrimp farming industry worldwide. Therefore, a comprehensive understanding of WSSV morphogenesis, structural proteins, and replication is essential for developing prevention measures of this serious parasite. The viral genome is approximately 300kb and contains more than 180 open reading frames (ORF). However, most of proteins encoded by these ORF have not been characterized. Due to the importance of WSSV structural proteins in the composition of the virion structure, infection process and interaction with host cells, knowledge of structural proteins is essential to understanding WSSV entry and infection as well as for exploring effective prevention measures. This review article summarizes mainly current investigations on WSSV structural proteins including the relative quantities, localization, function and protein-protein interactions. Traditional proteomic studies of 1D or 2D gel electrophoresis separations and mass spectrometry (MS) followed by database searches have identified a total of 39 structural proteins. Shotgun proteomics and iTRAQ were initiated to identify more structural proteins. To date, it is estimated that WSSV is assembled by at least 59 structural proteins, among them 35 are defined as the envelope fraction (including tegument proteins) and 9 as nucleocapsid proteins. Furthermore, the interaction within several major structural proteins has also been investigated. This identitification and characterization of WSSV protein components should help in the understanding of the viral assembly process and elucidate the roles of several major structural proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...